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Process algebra-based computational tools in ecological modelling
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A B S T R A C T

Ecological systems and processes are inherently variable. The multiplicity of interacting processes and

the variety of components call for multi-level, integrative models that keep track of stochasticity and

quantify its consequences. Mathematics and physics already helped biologists a lot, but the

composability feature of process algebra-based computational tools may provide additional help in

modelling interacting stochastic processes. Compositional models can be built in a modular way, and can

be easily standardized and evaluated rigorously. Following initial applications in systems biology, the

concepts of parallelism and concurrency can also be of key importance to future systems ecology. We

provide an overview of process algebra-based approaches in ecology, discuss the perspectives of this

research line and provide a toy and a real example for illustration.
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1. Introduction

Since the influential works of Clements (1916) and Gleason
(1926), ecologists typically approach most problems from two
major directions: searching for global laws (implying top-down
rules and well-determined patterns) or local rules (providing
bottom-up determination and contingent, stochastic processes).
We argue that computer science may help in integrating these
research strategies.

Public databases and computational power are both growing
continuously in biology. Still, what we call systems biology today is
nearly exclusively based on collecting huge amounts of informa-
tion without a hierarchical perspective or coherent integration (see
Klipp et al., 2009). In order to improve the predictive power of
biological models, novel computational tools will be important
(DeAngelis and Gross, 1992; Green et al., 2005). Apart from
managing huge databases and visualising complex systems, new
kinds of algorithms could link community and systems ecology by
providing tools for process-based approaches. The solution to
these problems will become computable by increasing computer
power and introducing novel conceptual and computational tools
(Levin et al., 1997).

Although many works have already suggested focusing more on
ecological processes and less on structures (Thompson, 1988), new
tools are required to represent functional issues (Clark, 2009). A
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number of studies are still focused on static patterns, while
dynamic behaviour is only inferred from certain static properties
(such as scale-free distribution used as a proxy for vulnerability
against attacks and robustness against errors, Solé and Montoya,
2001; Dunne et al., 2002). Considering environmental noise may
also be important for modelling ecodynamics (Björnstad et al.,
1999). The sensitivity of genotypes (i.e., reaction norm, Angilletta
et al., 2003) and interspecific interactions (i.e., interaction norm,
Thompson, 1988) to environmental variation is well known.
Environmental stochasticity and contingency provides the free-
dom of choice for individual organisms within various constraints
(Belovsky, 1981). All of these reasons point to the pressing need for
improved techniques for stochastic modelling (Ebenman and
Jonsson, 2005). For future conservation management (and likely
also in humanities), noise and variability will be studied for the
sake of providing a pool of solutions for adaptive management,
rather than looking for strategies to minimize their impacts
(Holling, 2001).

In the present paper, we provide an overview of the need for and
the first applications of process algebra-based models in biology
and ecology. We discuss their composable property and relevance
in ecological modelling. Finally, we present two illustrative
examples: a toy model and a real case study.

2. Individual-based models

Individual-level variability (DeAngelis and Mooij, 2005),
stochasticity and local interactions (Levin, 1998; Brose et al.,
2005) call for individual-based models (IBMs, Grimm et al., 2006;
McKane and Drossel, 2006; Grimm and Railsback, 2005) in the case
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of several ecological problems. Although standardization (Grimm
et al., 2006) and evaluation of these models are difficult (e.g.,
because of the extensive lack of published computer codes, Judson,
1994), and their generality is poor, they provide powerful solutions
for particular case studies. The key challenge here is to identify
relevant local mechanisms that can trigger macroscopic patterns,
as this is the way to link population biology to communities and
ecosystems (Huston et al., 1988; Johnson and Stinchcombe, 2007;
Loreau, 2010). In particular, novel conceptual tools and algorithms
are needed to model concurrent, multiple effects. IBMs provide a
bottom-up (Grimm et al., 2005) approach based on sophisticated
local mechanisms (Seth, 2007). Another advantage of IBMs is their
ability to supply detailed predictions on real systems (e.g.,
modelling the effects of five killer whale individuals on sea otters,
Williams et al., 2008), although this goal is fulfilled at the price of
generality. This approach makes it possible to consider intra-
individual level information (e.g., trait-based, McGill et al., 2006;
Peacor et al., 2006) or aggregating individuals to larger groups (e.g.,
superindividuals, Scheffer et al., 1995). If a given amount of
biomass is consumed, deterministic models clearly cannot show
the difference between a single tuna individual, hundreds of small
pelagic animals or millions of meso-zooplankton organisms.
Heterogeneous, hierarchical, flow-based, nonlinear ecological
systems are coined complex adaptive systems (Levin, 1998;
Grimm et al., 2005). Here, bottom-level variability (Björnstad
et al., 1999) leads to adaptability and evolvability. The bottom-up,
local rules-based view seems to be also more intuitive in biology
(Judson, 1994), as opposed to top-down descriptions.

3. Algorithmic challenges

The multiplicity of system components and interactions, as well
as the large number of parameters in ecosystems, pose huge
computational problems (McKane and Drossel, 2006; Pascual,
2005). To deal with these difficulties, modellers have been taking
advantage of the increased processing power of modern computers
as well as developing novel tools and algorithms. Beyond the
recently introduced algorithmic toolkit (e.g., cellular automata:
Oborny et al., 2000, genetic algorithms: Ruiz-Moreno et al., 2006,
formal logic: Robertson et al., 1991, particle tracking: Kazanci et al.,
2009, Petri nets: Gronewold and Sonnenschein, 1998, and swarm
intelligence: Dorigo and Stutzle, 2004), a new stream of
computational techniques – based on quantitative extensions of
process algebra (Priami et al., 2001) – has already been used in
molecular computational and systems biology (Priami and
Quaglia, 2004).

4. Process algebra-based modelling in biology

Several process algebra-based programming languages have
been developed to explicitly model interactions of biological
entities (e.g., Weighted Synchronous Calculus of Communicating
Systems – WSCCS, Tofts, 1993, or BlenX, Dematté et al., 2008a;
Priami, 2009). Their important feature is composability: a model is
nothing more than the ‘sum’ of its parts, which can be individually
modelled then put together. Building models by composition has
several advantages: model development can be modular, stan-
dardization is relatively easy and the evaluation can be rigorous.
Furthermore, composability enables the modeller to begin with a
simple well-characterized toy model and increase it in complexity
gradually by adding additional elementary elements, instead of
rewriting major parts of the code and risk introducing new bugs.
An initial model can be easily fine-tuned according to pilot studies
or sensitivity analyses, or can be simply extended and modified.
These features are advantageous for recurrent application and
standardization (in contrast to ad hoc model building, Scheller et
al., 2010).

BlenX (Dematté et al., 2008b), a process algebra-based
language, has been developed within the framework of algorithmic
systems biology (Priami, 2009). It enhances current modelling
capabilities (i.e., ease of use, composability and reusability of
models) and is explicitly designed to describe interactions of
(biological) entities (i.e., quantitative information about speed and
probability of actions is provided with systems specification).
Individuals are represented by boxes, composed by interfaces (sets
of binders) and internal programs that are executed simultaneous-
ly. The interaction sites on boxes are called binders. The internal
structure of the process influences the interactions of each box
with other boxes, modifies the interface of the process, and can also
change the internal structure of other processes through interac-
tions mediated by binders. For example, when a box is used to
model an individual organism, binders are characterized by
different levels of affinity to interact with other species (e.g.,
predator–prey or plant–pollinator relationships). In the case of
food webs, interaction strength (i.e., prey preference extracted
from weighted food webs) is considered as the ‘‘kinetic rate’’. The
internal structure codes the mechanism that transforms an input
signal into demographic (e.g., reproduction, death) or behavioural
(e.g., changed prey preference) change of individuals. Signals are
represented as messages exchanged over communication chan-
nels. Once internal processes within boxes and interactions
involving several boxes are defined, the system behaviour emerges
out of lower-level dynamics. Since the hierarchical view is implicit,
it is suitable for modelling the links between different organiza-
tional levels and among interconnected, multiple, parallel pro-
cesses. The stochastic approach can be of key importance for
studying ecological interactions, particularly in models with small
population size. In fact, stochastic simulations allow the modeller
to complement deterministic dynamic models. These latter are
feasible when the population size is sufficiently large to minimize
noise in the overall system. In models with small population size,
stochasticity can be modelled explicitly. To this end, BlenX can
capture the inherent variability of biological systems, as opposed
to ordinary differential equation-based simulations which rely on a
homogeneous set of components. While the latter represents a
view based on equations to provide general laws with some
(mostly external) noise, the former describes a situation where
variability is inherent and influential. Important features of BlenX
are composability, propensity to describe parallel events and the
opportunity of including multiple interactions. Composability
refers to model construction and development. It allows to extend
models by adding simple and modular elements instead of
complete rewriting program codes. In ecology, predation and
facilitation shape animal communities, but their concurrent
interactions are difficult to integrate. BlenX offers the language
for modelling these parallel (i.e., concurrent) events. Simulating
concurrent interactions also corresponds to investigating preda-
tor–prey, plant–pollinator and host–parasite relationships under
this unique approach.

Various process algebras have already been used in biology
(Table 1). At the molecular level, the Chemical Model Definition
Language was successful in predicting rRNA synthesis (Ciocchetta
et al., 2008), Bio-PEPA models fitted well to measured intracellular
Ca2+ oscillations (Ciocchetta and Guerriero, 2009) and the in silico

evolution of MAPK pathways modelled in BlenX language
produced remarkable patterns (Dematté et al., 2008a,b).

The first ecological applications addressed social insect colo-
nies. The WSCCS language-based theoretical investigations of Tofts
(1993) were supported by experiments (Sendova-Franks and
Franks, 1993, 1994). These studies suggested that not only the age
of ant individuals but also their precise spatial location determines



Table 1
Some biological applications of various process algebra-based languages.

Field Key finding (PA used) Reference

Division of labour (ants) ‘Foraging for work’ algorithm optimizes task allocation (WSCCS) Tofts (1993)

Colony dynamics (ants) Cues, not signals help colony synchronization (WSCCS) Sumpter et al. (2001)

Thermoregulation (bees) Real spatial patterns (e.g. disk) emerge from local rules (WSCCS) Sumpter and Broomhead (2000)

Parasite dynamics (bees) Aphid dynamics influenced by summer migration (WSCCS) Sumpter and Broomhead (2001)

Epidemiology (bees) Crossing epidemic threshold breaks mite/virus/bee balance (WSCCS) Sumpter and Martin (2004)

Epidemiology (human) SIR model of HIV fits well to data (WSCCS) McCaig et al. (2009)

RNA synthesis Simulated data fit well to measurements (CMDL) Ciocchetta et al. (2008)

Membranes Intracellular Ca2+ oscillation predicted (BioPEPA) Ciocchetta and Guerriero (2009)

Signalling In silico MAPK cascade evolution is punctuated (BlenX) Dematté et al. (2008a)

Food web dynamics Community importance quantified (BlenX) Livi et al. (2011)
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division of labour. The role of learning and the dominance of older
individuals were also theoretically predicted and experimentally
demonstrated.

Sumpter and colleagues applied the same language with great
success in better understanding thermoregulation (Sumpter and
Broomhead, 2000), parasite dynamics (Sumpter and Broomhead,
2001) and epidemics (Sumpter and Martin, 2004) in honey bees.
Process algebra-based models helped also understanding colony-
level synchronization processes in insect colonies (Tofts, 1993;
Sumpter et al., 2001). Extensions towards population biology and
Fig. 1. (a) Two molecules can interact if they have compatible functional groups: org

www.jmol.org). (b) Prey–predator interactions are also based on behavioural, anatomica

cases, interactions are characterized by certain rates that are measurable and frequentl

model. Individual A can be involved in six kinds of processes: with rate k1, it can eat B (c

plant C (t7 is their shared communication channel); with rate k3, it can form a social tie to

switch spatial location between habitat patches (t6 is yellow between the social partner

habitat marked by a green t6); with rate k5, it can change developmental status (i.e. matur

processes require two individuals, while the latter three ones are performed by a single in

languages offering modular model construction, rigorous standardization and easy eva
epidemiology are being quickly developed (Norman and Shank-
land, 2004; McCaig et al., 2009).

5. Process algebra applications in ecology

Several stochastic approaches to ecological modelling and
simulation (Kazanci et al., 2009; Powell and Boland, 2009;
Matamba et al., 2009) use the Markov process-based Gillespie
algorithm (Gillespie, 1977). Here, kinetics adopted in computa-
tional cell biology has been typically imported to ecology, but
anic acids (R–COOH) and alcohols (R–OH) form esters (picture made by http://

l and spatiotemporal compatibility (pictures from http://www.fishbase.org). In both

y known. In (c), we see a box-representation of a process algebra-based ecosystem

ompatibility coded by the same t2 type of binder); with rate k2, it can pollinate the

 another conspecific individual (disposing identical binder types); with rate k4, it can

s but no social tie can be established with the conspecific A individual in a different

e, resulting in altered rates) and finally, with rate k6, it can reproduce. The first three

dividual. All these processes can be very simply combined in process algebra-based

luation.
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http://www.fishbase.org/


F. Jordán et al. / Ecological Complexity 8 (2011) 357–363360
there is a compelling need for implementing other theories with
specific relevance in ecology (e.g., functional responses, Abrams
and Ginzburg, 2000; Okuyama, 2009). Nonetheless, simple
kinetic rules seem to apply quite well in several cases. For
example, the number of shark-bitten pinnipeds is proportional
to shark and pinniped abundance (Stevens et al., 2000) and
community shift in a study of exploitative competition is
proportional to prey availability, relative competitive abilities
and the relative densities of consumers (Stevens et al., 2000).
These parameters correspond to kinetic rates and concentrations
in simple chemical reactions. If two molecules A and B have
compatible functional groups, they may react (Fig. 1a). The
probability of reaction depends on the concentration of both
molecules and the reaction rate (as well as on the concentration
of products if the reaction is reversible). The simplest kinetics
for an interspecific interaction may follow the same logic: prey
density, predator density and the prey preference of the
predator comprise the three parameters describing the proba-
bility of feeding (Fig. 1b). Process algebras provide tools for
studying the interactions among several types of processes
described by suitable kinetics (Fig. 1c).

The major advantage of process algebra-based approaches is
that, given only a few initial parameters, they can model relatively
complex systems, whose behaviour can then be simulated taking
into account the influence of relevant environmental effects (as
opposed to modelling overly complicated behaviour in an over-
simplified environment, Ginzburg and Jensen, 2004; McNamara
and Houston, 2009). As adding complexity to a model always needs
to be justified (see Clark, 2009), these tools are useful in calibrating
both environmental and internal complexity and optimizing the
number of parameters used.
Fig. 2. Toy food web composed of eight species. It illustrates how to integrate different int

interactions (a), but it can be improved by adding a mutualistic (+/+) interaction between

effect (+/0) from species G to species B (d). In (e), all of these three non-trophic effects are 

above cases (black for the food web, red is for adding mutualism, blue is for adding compe

trophic effects are added). The initial population size of B slightly decreases in the food we

decrease is even larger with competition. The overall effect is more or less the sum of 

complexity, combining all these effects is easy in process algebras, because of compos
6. Composability and modelling different interaction types

A major challenge in community ecology is how to integrate our
increasing databases on various interaction types (Bertness and
Callaway, 1994; Olff et al., 2009). Food webs, mutualistic networks
and competitive interactions are very rarely modelled in parallel.
One problem is that different studies do not overlap (e.g., they
describe the food web of community A and the plant-pollinator
network of community B). The larger problem consists of using
different currencies to characterize different interaction networks,
under a unique framework (e.g. carbon flow for food webs and
visitation frequency for plant-pollinator webs). These biological
issues cannot be fully addressed by process algebraic models, but
efficient and simple solutions can help and contribute to model
development.

Fig. 2 shows an illustrative case study, where the problem was
modelled with the BlenX process algebra. We show a simple toy
food web (Fig. 2a), with mutualism (Fig. 2b), direct competition
(Fig. 2c) and facilitation (Fig. 2d) added separately. Fig. 2e shows
the network with all of the three non-trophic interactions added
simultaneously. Variation in population size of species B, under the
above scenarios, is illustrated by Fig. 2f. Very simple modifications
of the initial model can flexibly cope with these situations.
Composability ensures that increasing model complexity does not
require linearly increasing programme size. Instead, the relation-
ship is saturating: after some point, several new parameters,
functions and variables can be added by only slightly increasing
the size of the computer programme. These features also offer new
ways of explicitly studying additivity and non-linearity. The
stochastic simulation outcome shown in Fig. 2f is intuitively
understandable. Different interaction intensities (currencies) are
eraction types in the BlenX process algebra. The food web shows only prey–predator

 species B and E (b), a competition (�/�) between species A and B (c) or a facilitation

added simultaneously. In (f), the simulated time-series of species B are shown for the

tition, green is for adding facilitation, and dashed line shows the case where all non-

b. This effect is counterbalanced by positive effects (mutualism and facilitation). The

the others according to the simulation of this simple toy model. Despite biological

ability.
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all expressed in terms of reproduction rate, allowing to consider
several concurrent relations under a single, integrative framework.

7. Process algebra and conservation biology

Stochastic simulations focusing on individuals and local, parallel
processes are especially promising in conservation practice. Here,
what we are seeking to model and understand is the behaviour and
extinction risk of rare species. The weakest aspect of traditional
models (e.g., deterministic simulations) is that they describe these
species by means of average population features, whereas the more
important feature under extreme circumstances is the peculiar
behaviour of each individual. As population size becomes smaller,
genetics and demography, environmental variability and also
unique interactions can be of major importance (Lande, 1988).
Also, below some critical population size, interaction patterns and
rates may change, and the modeller has to be able to redefine or
Fig. 3. (a) Prince William Sound food web simulated by the BlenX process algebra-based la

series of three species in a trophic cascade constellation: pacific cod (orange) eating n

apparent competition: sablefish (red) consuming jellies (dark blue) and juvenile herri

nearshore demersals (light blue) for herbivorous zooplankton (yellow). In the plots, curve

in textbooks: one reason is stochasticity and the other is the larger context: the triplets 

some patterns are intuitively understandable. In (b), the final part of the simulation show

middle level. In (c) and (d), competitors often change in reverse direction.
update parameters, and even model structure. This can easily be
tackled in a modelling framework if the rules are local and model
specification is bottom-up.

For any practical application, simulation and sensitivity
analysis are of highest importance, regardless of the modelling
tool used (Ginzburg and Jensen, 2004). Stochastic, individual-
based or event-based simulations make it possible to study the
variability of system behaviour. Apart from average responses,
variance responses can also be measured after disturbance.
Another parallel in evolutionary biology is quantitative genetics,
where the ultimate question is how genetic variance can
contribute to phenotypic variance (Roff, 1997).

Based on a simple food web model, where ecosystem dynamics
are implemented in BlenX, we can illustrate how sensitivity analysis
can be used for quantifying community importance of species,
offering quantitative tools for conservation practice. Fig. 3 sum-
marizes an ecosystem simulation, where biomass and trophic flow
nguage. Colour codes correspond to species in (b), (c) and (d). (b) The simulated time

earshore demersal fish (light blue) eating shallow large epibenthos (pink). (c) An

ng (green). (d) An exploitative competition: adult pollock (violet) competes with

s show the population size of selected species in time. Time series are not as clear as

of species are not isolated but have other interactive partners in the food web. Yet,

s a synchronous increase of the first and third trophic level, while a decrease of the
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data have been translated to number of individual and interaction
rates, respectively. The original database describes the food web of
Prince William Sound (Okey and Pauly, 1999; Okey, 2004; Okey and
Wright, 2004). With all the parameters used (number of individuals,
reaction rates, birth and death rates), conventional modelling tools
would be extremely computationally expensive. Process algebra
substantially reduces computational costs and opens possibilities
for using a number of other parameters (e.g., age structure and
genetic variance; not presented here for simplicity). The present
model, thus, illustrates a closed ecosystem with no evolution. The
simulation plot shows the temporal behaviour of eight fish from the
food web, while the dynamics of all species are simulated. In the
reference simulation, based on many runs with the same initial
conditions and parameters, we can measure the variability of system
behaviour. Then, parameters can be changed one by one, or in
combinations, in several ways. In a simplistic, illustrative case, we
only change the initial number of individuals of each species, one by
one. For each disturbance regime we run the model several times
and measure the response of each other species (in terms of either
mean or variance of population size). Based on these response
values, a matrix can be created, informing us how large is the
variation of species in column j after disturbing species in row i. Row
and column sums provide measures of community importance and
community sensitivity, respectively. The first expresses the magni-
tude of community-wide effect of disturbing a focal species, while
the latter expresses the sensitivity of a focal species to variations in
others. Community importance indicators, like these quantitative,
stochastic simulation-based importance measures are strongly
needed in conservation biology (Mills et al., 1993). The final
outcome can be a species importance rank based on a dynamical
model parameterized with realistic values (Livi et al., 2011).

As the structural (positional) importance of species can be
measured simply by network analysis, this simulation framework
can be used for approaching the classical ‘‘structure to dynamics’’
problem of ecology (Patten, 1991; Pimm, 1991; Polis and
Winemiller, 1996; de Ruiter et al., 2005; Dunne, 2006). Moreover,
the food web model can be extended towards the analysis of
individual populations (explicit consideration of the social
network) and metacommunities studied in space. Building such
a hierarchical model in process algebras is extremely simple and
intuitive.

8. Perspectives and conclusions

Novel conceptual and computational tools (e.g., stochastic
programming languages) can help in investigating the link
between local and global processes, simulating density depen-
dence (Björnstad et al., 1999), and explicitly modelling
hierarchical organization (Levin, 1998; Kolasa, 2005; Lafferty
and Dunne, 2010). This kind of bottom-up modelling may build
bridges between genetics (variability), behaviour (local interac-
tions), ecology (interaction system dynamics) and evolution (evo-
mecho, McNamara and Houston, 2009). In practice, these tools
may serve to plan systems-based conservation strategies (Berkes,
2004), for example in managing multispecies fisheries (Yodzis,
2001). Key directions for future research include broadening the
available set of implemented kinetics (e.g., various functional
responses), developing standards of common currencies for
different processes (e.g., comparing competition and dispersal)
and creating tools to allow ecologist users to apply process
algebra-based languages without the hassle of writing low-level
code (even if the later phase of model development is easier). In
spite of these open problems and difficulties, we believe that
computer science will provide a vital contribution to future
systems ecology.
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Dematté, L., et al., 2008. The BlenX language: a tutorial. In: Bernardo, M. (Ed.),
Formal Methods for Computational Systems Biology. Springer, Berlin, pp.
313–365.

Dorigo, M., Stutzle, T., 2004. Ant Colony Optimization. MIT Press.
Dunne, J.A., 2006. The network structure of food webs. In: Pascual, M., Dunne, J.A.

(Eds.), Ecological Networks: Linking Structure to Dynamics in Food Webs.
Oxford University Press, Oxford, pp. 27–86.

Dunne, J.A., et al., 2002. Network structure and biodiversity loss in food webs:
robustness increases with connectance. Ecol. Lett. 5, 558–567.

Ebenman, B., Jonsson, T., 2005. Using community viability analysis to identify fragile
systems and keystone species. Trends Ecol. Evol. 20, 568–575.

Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem. 81, 2340–2361.

Ginzburg, L.R., Jensen, C.X.J., 2004. Rules of thumb for judging ecological theories.
Trends Ecol. Evol. 19, 121–126.

Gleason, H.A., 1926. The individualistic concept of the plant association. Torrey Bot.
Club Bull. 53, 7–26.

Green, J.L., et al., 2005. Complexity in ecology and conservation: mathematical,
statistical, and computational challenges. Bioscience 55, 501–510.

Grimm, V., Railsback, S.F., 2005. Individual-based Modeling and Ecology. Princeton
University Press, Princeton, New Jersey.

Grimm, V., et al., 2005. Pattern-oriented modeling of agent-based complex sys-
tems: lessons from ecology. Science 310, 987–991.

Grimm, V., et al., 2006. A standard protocol for describing individual-based and
agent-based models. Ecol. Model. 198, 115–126.

Gronewold, A., Sonnenschein, M., 1998. Event-based modelling of ecological sys-
tems with asynchronous cellular automata. Ecol. Model. 108, 37–52.

Holling, C.S., 2001. Understanding the complexity of economic, ecological and social
systems. Ecosystems 4, 390–405.

Huston, M., et al., 1988. New computer models unify ecological theory. Bioscience
38, 682–691.

Johnson, M.T.J., Stinchcombe, J.R., 2007. An emerging synthesis between commu-
nity ecology and evolutionary biology. Trends Ecol. Evol. 22, 250–257.

Judson, O.P., 1994. The rise of the individual-based model in ecology. Trends Ecol.
Evol. 9, 9–14.

Kazanci, C., et al., 2009. Cycling in ecosystems: an individual based approach. Ecol.
Model. 220, 2908–2914.

Klipp, E., et al., 2009. Systems Biology in Practice: Concepts Implementation and
Application. Wiley, Weinheim.

Kolasa, J., 2005. Complexity, system integration, and susceptibility to change:
biodiversity connection. Ecol. Complex 2, 431–442.

Lafferty, K.D., Dunne, J.A., 2010. Stochastic ecological network occupancy (SENO)
models: a new tool for modelling ecological networks across spatial scales.
Theor. Ecol. 3, 123–135.

Lande, R., 1988. Genetics and demography in biological conservation. Science 241,
1455–1460.



F. Jordán et al. / Ecological Complexity 8 (2011) 357–363 363
Levin, S.A., 1998. Ecosystems and the biosphere as complex adaptive systems.
Ecosystems 1, 431–436.

Levin, S.A., et al., 1997. Mathematical and computational challenges in population
biology and ecosystems science. Science 275, 334–343.

Livi, C.M., Jordán, F., Lecca, P., Okey, T.A., 2011. Identifying key species in ecosystems
with stochastic sensitivity analysis. Ecol. Model. 222, 2542–2551.

Loreau, M., 2010. Linking biodiversity and ecosystems: towards a unifying ecologi-
cal theory. Phil. Trans. R. Soc. B 365, 49–60.

Matamba, L., et al., 2009. Throughflow analysis: a stochastic approach. Ecol. Model.
220, 3174–3181.

McCaig, C., et al., 2009. From individuals to populations: a symbolic process algebra
approach to epidemiology. Math. Comp. Sci. 2, 535–556.

McGill, B.J., et al., 2006. Rebuilding community ecology from functional traits.
Trends Ecol. Evol. 21, 178–185.

McKane, A.J., Drossel, B., 2006. Models of food-web evolution. In: Pascual, M.,
Dunne, J.A. (Eds.), Ecological Networks: Linking Structure to Dynamics in
Food Webs. Oxford University Press, Oxford, pp. 223–243.

McNamara, J.M., Houston, A.I., 2009. Integrating function and mechanism. Trends
Ecol. Evol. 24, 670–675.

Mills, L.S., et al., 1993. The keystone-species concept in ecology and conservation.
Bioscience 43, 219–224.

Norman, R., Shankland, C., 2004. Developing the use of process algebra in the
derivation and analysis of mathematical models of infectious disease. Lecture
Notes Comput. Sci. 280, 404–414.

Oborny, B., et al., 2000. The effect of clonal integration on plant competition for
mosaic habitat space. Ecology 81, 3291–3304.

Okey, T.A., 2004. Shifted community states in four marine ecosystems: some
potential mechanisms. PhD thesis, University of British Columbia, Vancouver.

Okey, T.A., Pauly, D. (Eds), 1999. A trophic mass-balance model of Alaska’s Prince
William Sound ecosystem, for the post-spill period 1994–1996, 2nd ed., Vol
Fisheries Centre Research Report 7(4), University of British Columbia, Vancouver.

Okey, T.A., Wright, B.A., 2004. Toward ecosystem-based extraction policies for
Prince William Sound Alaska: integrating conflicting objectives and rebuilding
pinnipeds. Bull. Mar. Sci. 74, 727–747.

Okuyama, T., 2009. Local interactions between predators and prey call into question
commonly used functional responses. Ecol. Model. 220, 1182–1188.

Olff, H., et al., 2009. Parallel ecological networks in ecosystems. Phil. Trans. R. Soc. B
364, 1755–1779.

Pascual, M., 2005. Computational ecology: from the complex to the simple and back.
PLoS Comput. Biol. 1, e18.

Patten, B.C., 1991. Network ecology: indirect determination of the life/environment
relationship in ecosystems. In: Higashi, M., Burns, T.P. (Eds.), Theoretical Studies
of Ecosystems – The Network Perspective. Cambridge University Press,
Cambridge, pp. 117–154.

Peacor, S.D., et al., 2006. Phenotypic plasticity and species coexistence: modeling
food webs as complex adaptive systems. In: Pascual, M., Dunne, J.A. (Eds.),
Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford
University Press, Oxford, pp. 245–270.

Pimm, S.L., 1991. The Balance of Nature? Ecological Issues in the Conservation of
Species and Communities. The University of Chicago Press, Chicago.
Polis, G.A., Winemiller, K.O. (Eds.), 1996. Food webs: Integration of Patterns and
Dynamics. Chapman and Hall, London.

Powell, C.R., Boland, R.P., 2009. The effects of stochastic population dynamics on
food web structure. J. Theor. Biol. 257, 170–180.

Priami, C., 2009. Algorithmic systems biology. Commun. ACM 52, 80–89.
Priami, C., Quaglia, P., 2004. Modelling the dynamics of biosystems. Brief Bioinform.

5, 259–269.
Priami, C., et al., 2001. Application of a stochastic name-passing calculus to

representation and simulation of molecular processes. Inform. Process. Lett.
80, 25–31.

Robertson, D., et al., 1991. Eco-logic: Logic-based Approaches to Ecological Model-
ling. MIT Press.

Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman and Hall, New York.
Ruiz-Moreno, D., et al., 2006. Exploring network space with genetic algorithms:

modularity resilience and reactivity. In: Pascual, M., Dunne, J.A. (Eds.), Ecolo-
gical Networks: Linking Structure to Dynamics in Food Webs. Oxford University
Press, Oxford, pp. 187–208.

Scheffer, M., et al., 1995. Super-individuals a simple solution for modelling large
populations on an individual basis. Ecol. Model. 80, 161–170.

Scheller, R.M., et al., 2010. Increasing the reliability of ecological models using
modern software engineering techniques. Front. Ecol. Environ. 8, 253–
260.

Sendova-Franks, A.B., Franks, N.R., 1993. Task allocation in ant colonies within
variable environments (a study of temporal polyethism: experimental). Bull.
Math. Biol. 55, 75–96.

Sendova-Franks, A.B., Franks, N.R., 1994. Social resilience in individual worker ants
and its role in division of labour. Proc. R. Soc. Lond. B. 256, 305–309.

Seth, A.K., 2007. The ecology of action selection: insights from artificial life. Phil.
Trans. Roy. Soc. B. 362, 1545–1558.
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