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Link arrangement in food webs is determined by the species’ feeding habits. This work investigates whether food web
topology is organized in a gradient of trophic positions from producers to consumers. To this end, we analyzed 26 food
webs for which the consumption rate of each species was specified. We computed the trophic positions and the link
densities of all species in the food webs. Link density measures how much each species contributes to the distribution of
energy in the system. It is expressed as the number of links species establish with other nodes, weighted by their
magnitude. We computed these two metrics using various formulations developed in the ecological network analysis
framework. Results show a positive correlation between trophic position and link density across all the systems, regardless
the specific formulas used to measure the two quantities. We performed the same analysis on the corresponding binary
matrices (i.e. removing information about rates). In addition, we investigated the relation between trophic position and
link density in: a) simulated binary webs with same connectance as the original ones; b) weighted webs with constant
topology but randomized link strengths and c) weighted webs with constant connectance where both topology and link
strengths are randomized. The correlation between the two indices attenuates, vanishes or becomes negative in the case of
binary food webs and simulated data (weighted and unweighted).

According to our analysis, link density in food webs decreases with trophic position so that it is greatly reduced toward
the top of the trophic hierarchy. This outcome, that seems to challenge previous conclusions based on null models,
strongly depends on link quantification. Including interaction strengths may improve substantially our understanding of
food web organization, and possibly contradict results based on the analysis of binary webs.

Food webs describe ecological communities as networks in
which the species (nodes) are connected by directed links
(arrows) representing energy transfers from resources to
consumers. Understanding the structure of food webs, and
in particular how feeding links are distributed among
species, has received a lot of attention in recent ecological
literature (Cohen et al. 1990, Williams and Martinez 2000,
Cattin et al. 2004, Allesina et al. 2008). Links represent who
eats whom in an ecosystem and consequently how species’
feeding habits determine food web structure. Moreover,
species’ feeding activity defines their effective trophic level,
representing a hierarchical organization of the food web
(Christian and Luczkovich 1999). Given these premises, one
interesting question is to study whether species connectivity
relates to trophic position in a simple way.

The degree of connectivity exhibited by species in a food
web is a key feature in food web analysis and has been
measured in different ways, the most popular being the so
called ‘linkage density’, defined as number of links per
species (Cohen et al. 1990), also known as ‘link density’
(Bersier and Sugihara 1997) and the connectance, the
fraction of realized links (Dunne et al. 2002a). All these
measures are typically computed considering the sheer
number of connections a species establishes in a food

web. However, because the main function performed by
feeding links is to deliver energy, the ‘intensity’ of
connectivity should also be considered. To this end, we
consider here a measure of link density, the average mutual
information (Ulanowicz 2004), which takes into account
the intensity and distribution of interaction strengths.

In the remainder of this work, we investigate the
following questions: a) do species’ link density correlate to
species’ trophic positions? b) can we detect general patterns
for link density across ecosystems? c) do null-models predict
same patterns than empirical food webs?

We analyzed 26 weighted food webs (Bersier et al. 2002)
originally compiled as flow networks, models in which links
between species express transfer of energy or matter from
resources to consumers.

Material and methods

Data

We studied 26 quantitative food webs that were previously
published as ecological flow networks. We gathered the
data from two websites: eight networks were found in
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the ATLSS (across trophic level system simulation,
/<www.cbl.umces.edu/~atlss//>) website and the other 18
models downloaded from Dr Ulanowicz’s web page
(/<www.cbl.umces.edu/~ulan//>). The first dataset is com-
posed of eight networks (four ecosystems, wet and dry season
snapshots), while the second dataset is a more heterogeneous
database including various ecosystems and different networks
for same ecosystems (e.g. it includes six models of the
Chesapeake Bay describing different geographical locations
or seasons). A description of the 26 networks is provided
in the Supplementary material Appendix 1 (Table S1).
From these quantitative networks we obtained their binary
counterpart by setting the magnitude of each link equal to 1.

Trophic position

Ordering species in a community according to trophic
positions yields a continuous trophic spectrum that defines
a hierarchy from producers to consumers (van der Zanden
et al. 1997, Bondavalli and Ulanowicz 1999). Conceptually,
trophic position (TP) comes out from apportioning a
species feeding activity to a series of discrete trophic levels
sensu Lindeman (1942) and summing up these fractions. Its
computation is made possible by a suite of different
techniques that are essentially based on matrix manipula-
tions; in this paper we used the following three methods: a)
the canonical trophic aggregation (C, Ulanowicz and Kemp
1979, Scotti et al. 2006); b) the network unfolding
approach (H, Higashi et al. 1989) and c) the path-based
network unfolding algorithm (W, Whipple 1998). The
main difference between the three methods lies in that in
the C algorithm TP is computed using only trophic links;
the other two make use also of non-trophic flows (i.e.
detrital pathways; Ulanowicz and Kemp 1979, Higashi
et al. 1989, Whipple and Patten 1993, Whipple 1998). In
the C algorithm, TP is the weighted average length of all the
loopless pathways from the primary source of energy to any
species. Consider one species whose energy intake derives
from primary producers (20%) and from herbivores (80%);
the species is therefore 20% herbivore and 80% primary
carnivore. Consequently, its TP is 0.2�2�0.8�3�2.8.
The integer numbers that appear in this calculation labels
trophic levels and count exactly the number of steps energy
travels to reach the species (primary producers have TP�1,
because they rely on solar energy and energy travels a
pathway of length one: outside 0 primary producer.
Herbivores are at level 2 because energy travels a pathway
of length two: outside 0 primary producer 0 herbivore to
reach them, and so forth). Diet fractions are apportioned to
the corresponding trophic levels.

The idea of partitioning energy flows into portions
belonging to different trophic levels is also shared by the
other two methods. In the network unfolding scheme (H),
if a species i is said to be an omnivore, partially behaving as
herbivore and primary carnivore, its diet would comprise
two parts, ih and ic assigned at trophic level 2 and trophic
level 3, respectively. An organism j feeding on this species
would thus receive an amount of energy from ih and
another from ic so that it would be partially primary
carnivore and partially secondary carnivore. By keeping
track of these successive fractions throughout the web one

can unfold the original networks in multiple linear trophic
pathways, each one representing a particular chain of
transfers that a unit of energy experiences in the ecosystem
(Higashi et al. 1989).

Finally, the path-based network unfolding (W) is an
extension of the previous method that deals with the
problem of incrementing the trophic level also in presence
of non-trophic flows (‘trophic level inflation’; Whipple and
Patten 1993). In essence, the original matrix-based method
(Higashi et al. 1989) considers any passage of energy as
incrementing the trophic level, with the receiving compart-
ment always at a higher level than the donor, while the
path-based method does not increase the trophic level in
presence of non-trophic interactions which occur in the
pathway such as, for example, egestive transfers from living
to non-living compartments (Whipple 1998).

The main difference between the three methods is in the
way they treat diet partitioning in ecosystems containing
cycles, non-living matter storages (i.e. detrital components)
and their accompanying non-trophic flows (i.e. decay,
egestion, excretion).

Average mutual information

Average mutual information (AMI) expresses the average
amount of constraints exerted upon an arbitrary unit of
currency when passing from any one species to the next in
an ecological network (Rutledge et al. 1976, Ulanowicz
1986). Both the number of links and their magnitude
determine this measure. Figure 1 may help to understand
this concept.

The upper left configuration (Fig. 1a) is said to be
maximally constrained because there are no alternative
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Figure 1. Four hypothetical topologies for a network of four
nodes: (a) maximally constrained (AMI maximized), (b) and (c)
intermediate level of constraint, (d) most equivocal distribution of
links (AMI�0). Every node is at steady state and the total system
throughput is preserved (TST�144).
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routes for the movement of a unit of matter, which thus
moves in a completely predictable way. On the contrary,
network 1d imposes less constraint to the 144 units of
transfer among the four nodes and it is also the most
equivocal configuration because in it the uncertainty about
the fate of any single unit of transfer is maximized.
According to the meaning of AMI and the way it is
computed (details in Supplementary material Appendix 1),
network 1a possesses the highest value of AMI whereas the
lowest is for network 1d. The other two configurations
represent intermediate situations between the two extremes.

AMI is usually computed as a whole system index;
nevertheless it is possible to express the average amount of
constraints also for single nodes (species) in a network. In
that case AMI would measure the amount of constraints
imposed to energy in the way it enters or exits any given
node. Because these constraints are determined by the
number and magnitude of its links, AMI becomes also a
proxy for link density. For a single component AMI is
similar to the Ulanowicz’s effective connectance (m in
Ulanowicz and Wolff 1991) and Bersier’s link density (LD,
in Bersier et al. 2002). Supplementary material Appendix 1
provides a brief comparative analysis of the indices. Suffice
here to say that effective connectance and link density are
computed by averaging the diversity of inputs and outputs
for every node, whereas in our study we maintained the two
contributions separated. In practice, for each node we
calculated its AMI based on incoming links first, thus
considering it as a predator, and then using outgoing links,
viewing the node as a prey. We think this is more
appropriate than computing AMI as the average contribu-
tion of incoming and outgoing links because TP classifies
each species according to its feeding behavior, that is it
considers its role as a consumer only.

We framed our analysis in two schemes. One, called
‘AMI-living’, in which computation of AMI was done using
trophic links only (exchanges among non-detrital nodes);
the second, called ‘AMI-whole’, in which this index
included also the contribution of transfers from and to
detritus. For further details see Fig. S1 (Supplementary
material Appendix 1), in which we describe a typical matrix
of ecological flow networks. The two schemes allow
comparing the outcomes when indices are computed with
and without non-trophic links.

Statistical analysis

For every single ecosystem we estimated the Spearman’s
correlation coefficients (r) between TP and AMI. We
decided for a non-parametric correlation because TP is not
an independent variable (each species’ TP depends on that
of its prey), and both TP and AMI are not normally
distributed, showing a narrow range of variation. The way
we calculated TP and AMI allowed stressing different
scenarios for the analysis. We considered the nodes in their
role of prey (AMI based on outgoing links, Output
scenario) and predators (AMI based on incoming links,
Input scenario). For each scheme we compared ‘AMI-living’
and ‘AMI-whole’ with TP in all the forms we computed it:
C, H, W. In particular, we conceived different combina-
tions for these indices: C vs ‘AMI-living’ only, and both H

and W with ‘AMI-whole’. These specific combinations
reflect the coherence in the way indices are computed. So, it
seemed reasonable to couple C, which calculates species’
trophic position on the base of trophic links only, with
‘AMI-living’ that also makes use of trophic links. On the
other hand, both W and H compute species trophic
position by including also non-trophic links; accordingly
they have been associated with the ‘AMI-whole’ in the
correlation analysis.

Trophic position and average mutual information were
calculated also in simulated food webs. Over a total of
30 000 null-graphs for each empirical food web used as a
reference, 10 000 were binary food webs with same
connectance as the original one but with randomized link
assignment. The other 20 000 graphs were weighted food
webs. Of these, 10 000 preserved link topology as in the
original webs and for the rest 10 000 we maintained only
the connectance and modified link arrangement. Link
strengths in these models were assigned randomly within
the range of magnitude shown by links in the original webs.
Each node of these food webs was maintained at steady state
applying a balancing procedure (Allesina and Bondavalli
2003). This minimized changes of link intensities in
randomly assembled networks.

The Spearman’s correlation coefficients for these models
were estimated in the same 3 scenarios as explained before.
Overall, we obtained nine correlation sets.

Scale dependence was also examined both graphically,
plotting coefficients of correlation against the number of
nodes, and performing a regression with the associated
coefficient of determination (R2).

Results

Table 1 summarizes the results of the statistical analysis
performed on weighted food webs. A graphical synthesis is
also provided by the box plots of Fig. 2a�b.

Under the Input scenario TP and AMI yielded a strong
positive correlation, no matter which form was used for
computing the two metrics. Only one coefficient was
negative and not significant (final Narraganasett Bay model,
when Higashi TPs are compared to ‘AMI-whole’ indices:
r��0.123, p�0.503). Most of the positive correlations
were significant, although there were differences between the
single correlations (Table 1, Fig. 2). With the index of
trophic position estimated by C and AMI computed without
the contribution of non-trophic links (Table 1, 1st column;
Fig. 2a: C), the positive correlation was strong. Only for two
ecosystems it was non-significant (Cedar Bog Lake and
Ythan Estuary) and only the Lower Chesapeake (summer)
showed a weak association (r�0.453, p�0.011).

The other two indices of trophic position (Table 1,
Input, columns H and W) did not perform as well as C
when compared to their AMI counterpart (with import,
export and respiration flows entering the calculation).
Non-significant correlations were still few, but the intensity
of the association was less pronounced (Table 1, Input,
columns H and W).

Same analysis performed with AMI based on outgoing
links produced the coefficients listed in Table 1 under the
Output scenario. We obtained irregularly scattered points
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(Fig. 2b), and the linear positive correlation observed before
vanished. Most of the correlations, in fact, resulted not
significant (50 out of 78), with average values close to 0;
positive with TP based on trophic links only (Table 1,
Output, column C) and slightly negative for the other two
indices of trophic position (Table 1, Output, columns H
and W).

TP and AMI in binary food webs performed differently
from their weighted counterparts (Table 2, Fig. 2c�d).

Overall, the correlation between AMI and TP tended to
vanish in binary webs. In two cases the positive association
between trophic position and link density was clear enough:
those reported in W and H columns under the Input
scenario in Table 2. These coefficients, however, were lower
than the corresponding values in Table 1. In the other cases
average coefficients, either positive or negative, were close to
zero, and no correlation emerged between trophic position
and link density. In particular, the high correlation observed
for weighted food webs in the Input scenario and column C
(Table 1) completely vanished here, although few ecosys-
tems showed the same behavior as when weighted (Charca
de Maspalomas, Upper Chesapeake Bay). When indices
were computed considering both trophic and non-trophic
links, correlations remained positive, but lower than those
found using weighted data (Table 2, Input, H and W
columns). Under the Output scenario binary food webs
displayed results similar to weighted food webs, with most
negative coefficients of correlation.

To assess scale effect we analyzed Spearman’s rho values
in relation to the number of components (S), measuring the

coefficient of determination for distributions of AMI
against TP, both in weighted and unweighted webs. The
results of this analysis are summarized in Table 3 and
visualized as six figures in the Supplementary material
Appendix 1 (Fig. S2 for weighted networks and Fig. S3 for
unweighted food webs). The relationship between AMI on
ingoing flows and TP computed with the C algorithm, in
binary food webs, was the only case in which results were
affected by scale dependence (R2�0.665, pBB0.001).

Finally, Fig. 3 shows patterns observed for the same type
of correlation using simulated food webs. In binary food
webs with links randomly distributed, maintaining the
connectance of real ecosystems used as a reference, the
correlations became slightly negative (Fig. 3a). Preserving
the topology of the ecosystems under investigation, varying
link strength at random, made the correlations less strong
(Fig. 3b). Randomizing link positions and intensities made
the correlations vanish (Fig. 3c).

Discussion

Strong and significant correlations characterize the Input
scenario in both weighted and unweighted food webs
(Table 1, 2, Input columns). On the contrary AMI and
TP did not correlate in the Output scenario (Table 1, 2,
Output columns). This means that when the species are
considered in their role of predators, a strong positive
association between link density (AMI) and trophic posi-
tion emerges. This association vanishes when AMI is

Table 1. Spearman’s rho values (significance codes: 0 *** 0.001 ** 0.01 * 0.05) for the relationship between TP and AMI based on inflows
(Input columns) or based on outflows (Output columns), when measured in the 26 real ecosystems described by weighted food webs: C�
canonical trophic aggregation TP vs ‘AMI-living’; H�original matrix-based TP vs ‘AMI-whole’; W�path-based TP vs ‘AMI-whole’. Total (S)
and non-living (nl) number of nodes are summarized.

Input Output

Name S nl C H W C H W

Aggregated Baltic Sea 15 3 0.808 ** 0.771 ** 0.764 ** 0.295 0.070 �0.118
Cedar Bog Lake 9 1 0.591 0.681 * 0.698 * �0.482 0.170 0.186
Charca de Maspalomas 21 3 0.750 *** 0.296 0.330 �0.332 �0.513 * �0.558 **
Chesapeake mesohaline ecosystem 15 3 0.758 ** 0.309 0.617 * 0.629 * �0.302 �0.007
Chesapeake mesohaline network 36 3 0.894 *** 0.494 ** 0.606 *** �0.228 �0.134 �0.167
Crystal River Creek (control) 21 1 0.872 *** 0.864 *** 0.917 *** 0.207 �0.110 �0.092
Crystal River Creek (delta temp.) 21 1 0.903 *** 0.756 *** 0.768 *** �0.277 0.145 0.111
Lower Chesapeake Bay (summer) 34 3 0.453 * 0.698 *** 0.758 *** �0.220 �0.393 * �0.425 *
St Marks River flow network 51 3 0.654 *** 0.413 ** 0.508 *** �0.048 �0.325 * �0.364 **
Lake Michigan control network 36 1 0.940 *** 0.875 *** 0.911 *** �0.092 �0.176 �0.122
Middle Chesapeake Bay (summer) 34 3 0.772 *** 0.555 ** 0.735 *** �0.269 �0.323 �0.361*
Mondego estuary 43 1 0.853 *** 0.733 *** 0.854 *** �0.086 �0.070 �0.040
Final Narraganasett bay model 32 1 0.969 *** �0.123 0.002 0.416 * �0.155 �0.105
North Sea 10 0 0.988 *** 0.948 *** 0.948 *** 0.348 0.243 0.243
Somme estuary 9 1 0.753 * 0.546 0.630 �0.395 0.184 0.167
Upper Chesapeake Bay (summer) 34 3 0.915 *** 0.365 * 0.567 *** 0.085 �0.234 �0.302
Upper Chesapeake Bay 12 2 0.899 *** 0.938 *** 0.915 *** 0.211 0.302 0.496
Ythan estuary 13 3 0.618 0.741 ** 0.863 *** �0.372 �0.129 �0.176
Cypress Wetlands (dry season) 68 3 0.848 *** 0.845 *** 0.909 *** 0.248 * 0.380 ** 0.444 ***
Cypress Wetlands (wet season) 68 3 0.831 *** 0.831 *** 0.888 *** 0.235 0.418 *** 0.488 ***
Marshes and sloughs (dry season) 66 3 0.755 *** 0.572 *** 0.831 *** 0.374 ** �0.455 *** �0.313 *
Marshes and sloughs (wet season) 66 3 0.716 *** 0.630 *** 0.895 *** 0.375 ** �0.471 *** �0.307 *
Florida Bay (dry season) 125 3 0.913 *** 0.845 *** 0.905 *** 0.397 *** �0.083 �0.022
Florida Bay (wet season) 125 3 0.916 *** 0.796 *** 0.889 *** 0.391 *** �0.103 �0.036
Mangroves (dry season) 94 3 0.868 *** 0.648 *** 0.786 *** 0.251 * 0.352 ** 0.271 **
Mangroves (wet season) 94 3 0.875 *** 0.671 *** 0.801 *** 0.252 * 0.379 *** 0.289 **

Mean 0.812 0.642 0.742 0.074 �0.051 �0.032
SD 0.127 0.242 0.214 0.314 0.289 0.289
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computed using outgoing links, that is when species are
seen as prey. The fewer links one node has and/or the
skewer the distribution of their magnitude the higher the
AMI is for that node. Thus, the positive correlation we
observed between AMI and TP in the weighted food webs
under the Input scenario tells us that links entering a node
are fewer and/or total inflow more unevenly distributed
among links for species that feed higher up in the food
chain. According to this, species that occupy higher trophic
positions tend to be specialized, while species at the bottom
of the food web tend to be generalist. This pattern holds
across ecosystems and is irrespective of the way one
calculates the trophic positions, although some differences
exist between these indices.

The asymmetry that emerges when link density is
computed using consumer and resource connections de-
serves attention. In a previous study, Rossberg et al. (2006),
while revisiting and extending what asserted by Holt and
Lawton (1994), showed that species would differentiate
their feeding preferences to avoid competition, so that
foraging strategy rather than predatory avoidance would be
the major determinant for food web structure. Herbivores
would select primary producers to avoid competition with
other herbivores, primary carnivores would select herbivores
in the same way and so forth. Species would thus become
‘‘experts that consume families of experts’’. This pattern
seems to be irrespective of what trophic position a species
occupies. Our results are in accordance with Rossberg et al.
in showing that link arrangement can be patterned

according to species foraging strategies rather than some
predatory avoidance behavior by the prey. However, the
positive correlation we found between AMI and TP
suggests species feeding higher in the trophic chain would
resemble to the Rossberg’s ‘experts’, and this ‘expertise’
would become less evident as we move toward the lower
levels of the trophic hierarchy. Because we used link
strengths explicitly, the ‘‘experts that consume families of
experts’’ scheme could be forced by energetic constraints
that might have produced the skewed distribution of experts
toward the top of the trophic spectrum. Also, it is certainly
possible that diet specialization may prevent top species
from competition, but this cannot be inferred from our
results.

Bersier and Kehrli (2008) analyzed the relationship
between trophic and taxonomic similarity in food webs,
and found that the trophic structure of the prey would be
more related to phylogeny than that of predators; that is,
taxonomically similar prey would tend to share taxonomi-
cally similar predators but these latter tend not to share
taxonomically similar prey. From this evidence the authors
argued that adaptation to avoid predators would be less
important than adaptation to secure resources in structuring
trophic interactions, a taxonomically based asymmetric
behavior of the species in their role of predators and prey.
We did not include taxonomic constraints in our investiga-
tion; however, as a preliminary exploration of a possible
effect of taxonomic similarity on our outcomes, we isolated
the values of TP and AMI for species belonging to
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Figure 2. Box plots of correlation coefficients (Spearman’s rho) for TP (C�canonical trophic aggregation; H�original matrix-based
network unfolding method; W�path-based trophic unfolding method) vs AMI (on inflows left diagrams, on outflows right plots). Box
plots in (a) and (b) refer to weighted food webs; crude binary information on link presence/absence yielded plots in (c) and (d).
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extremely coarse taxonomic groups, in particular fish and
bird species, as we could not provide a finer taxonomic
classification, and calculated the correlations between the
two indices. We are not reporting these results here, as our
approach needs to be framed in a more taxonomically
rigorous one; however, we found that these two groups
exactly reproduced the pattern we observed in the whole
food webs: strong positive correlation between the two
metrics in the Input scenario and no relationships between
TP and AMI in the Output scenario. So, it seems that
taxonomic similarity does not affect the pattern of link
arrangement as a function of TP.

Under the Input scenario results suggest other consid-

erations. First, the correlation of AMI and TP when based
only on trophic links yielded different outcomes for
weighted and unweighted food webs. These latter showed
no correlation between AMI and TP, and, for certain
ecosystems, the correlation turned negative (Table 2,
column C). Upon including non-trophic links the two
indices showed a positive correlation in both weighted and
unweighted food webs, with lower values for the latter
(Table 2, columns H and W). This is not surprising if one
considers that non-trophic links point to species that
occupy lower trophic position (i.e. recycling does not
involve top predators) and this increases disproportionately
the number of connections at the bottom of trophic
spectrum.

Since most of the literature on food webs deals with
networks comprised of trophic links only, our results should
be discussed in this framework, that is emphasis must be
given to the comparisons between C and ‘AMI-living’.

The absence of correlation between AMI and TP when
the effect of link strength is removed would indicate that
trophic links are not distributed according to a specific
pattern and would be equally distributed between basal
species and top ones. On the other hand, the negative
correlation found in certain ecosystems indicates that
predators would establish more connections than basal
species.

Overall, by combining the results obtained for weighted
and unweighted webs one can infer that top species would
possess same or greater number of trophic links than species
feeding lower in the food chain, but most of these
connections are weak in magnitude and the skewed link

Table 3. Coefficients of determination for scale dependence of the
Spearman’s rho values. Each row in the table refers to a particular
type of comparison between AMI and TP as described in the text.
Keys are: for TP, C�canonical trophic aggregation; H�original
matrix-based network unfolding; W�path-based trophic unfolding
and for AMI, IN�based on incoming flows; and OUT�based on
outgoing flows. Results are for both weighted and unweighted food
webs.

Weighted Unweighted

R2 p R2 p

C � AMI IN 0.060 0.229 0.665 BB0.001
H � AMI IN 0.025 0.436 0.074 0.179
W � AMI IN 0.069 0.193 0.050 0.273
C � AMI OUT 0.210 0.019 0.109 0.099
H � AMI OUT 0.009 0.643 0.0001 0.958
W � AMI OUT 0.014 0.569 0.0003 0.935

Table 2. Coefficients of correlations (Spearman’s rho) estimated for TP vs AMI on inflows (Input columns) or AMI on outflows (Output
columns), when the 26 real ecosystems (S�total number of nodes, nl�non-living nodes) are represented as binary food webs: C�canonical
trophic aggregation TP vs ‘AMI-living’; H�original matrix-based TP vs ‘AMI-whole’; W�path-based TP vs ‘AMI-whole’.

Input Output

Name S nl C H W C H W

Aggregated Baltic Sea 15 3 0.467 0.746 ** 0.758 ** �0.152 �0.002 �0.059
Cedar Bog Lake 9 1 0.544 0.443 0.658 �0.770 * 0.237 0.221
Charca de Maspalomas 21 3 0.745 *** 0.370 0.365 �0.540 * �0.491 * �0.516 *
Chesapeake mesohaline ecosystem 15 3 0.584 * 0.147 0.314 0.154 �0.379 �0.307
Chesapeake mesohaline network 36 3 0.438 * 0.367 * 0.444 ** �0.463 ** �0.166 �0.146
Crystal River Creek (control) 21 1 0.135 0.432 0.563 ** 0.050 �0.142 �0.209
Crystal River Creek (delta temp.) 21 1 0.449 * 0.255 0.381 �0.291 0.204 0.144
Lower Chesapeake Bay (summer) 34 3 0.187 0.557 ** 0.699 *** �0.362 * �0.471 ** �0.518 **
St Marks River flow network 51 3 0.173 0.408 ** 0.424 ** �0.191 �0.146 �0.261
Lake Michigan control network 36 1 0.195 0.596 *** 0.725 *** �0.278 �0.108 �0.129
Middle Chesapeake Bay (summer) 34 3 0.361 * 0.358 * 0.458 ** �0.396 * �0.396* �0.425*
Mondego estuary 43 1 0.220 0.458 ** 0.712 *** �0.459 ** 0.034 �0.044
Final Narraganasett bay model 32 1 0.103 0.119 0.394 * �0.217 �0.170 �0.078
North Sea 10 0 0.329 0.945 *** 0.945 *** �0.298 0.250 0.250
Somme estuary 9 1 0.236 0.563 0.726 * �0.875 ** 0.368 0.244
Upper Chesapeake Bay (summer) 34 3 0.463 ** 0.576 *** 0.642 *** �0.288 �0.315 �0.363*
Upper Chesapeake Bay 12 2 0.886 ** 0.887 *** 0.924 *** 0.088 0.206 0.445
Ythan Estuary 13 3 0.472 0.704 ** 0.848 *** �0.706 * �0.011 �0.028
Cypress Wetlands (dry season) 68 3 0.111 0.775 *** 0.792 *** �0.367 ** 0.334 ** 0.329 **
Cypress Wetlands (wet season) 68 3 0.078 0.652 *** 0.673 *** �0.364 ** 0.330 ** 0.333 **
Marshes and Sloughs (dry season) 66 3 �0.151 0.482 *** 0.625 *** 0.099 �0.465 *** �0.450 ***
Marshes and sloughs (wet season) 66 3 �0.150 0.515 *** 0.640 *** 0.093 �0.445 *** �0.412 **
Florida Bay (dry season) 125 3 �0.168 0.839 *** 0.894 *** �0.050 �0.106 �0.065
Florida Bay (wet season) 125 3 �0.154 0.829 *** 0.886 *** �0.040 �0.101 �0.071
Mangroves (dry season) 94 3 �0.382 ** 0.531 *** 0.612 *** �0.272 ** 0.222 * 0.162
Mangroves (wet season) 94 3 �0.380 ** 0.525 *** 0.602 *** �0.279 ** 0.239 * 0.187

Mean 0.223 0.541 0.642 �0.276 �0.057 �0.068
SD 0.323 0.215 0.183 0.268 0.282 0.285
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magnitude would be responsible for lower (weighted) link
density of top species in weighted food webs. Moving
towards the top of the trophic hierarchy we would encounter
fewer stronger links dispersed in many weak links.

There are evidence accumulated in the literature showing
that interaction strength follows fat tailed distributions,
with most weak links and a few very strong ones (McCann
et al. 1998, Sala and Graham 2002, Emmerson and
Yearsley 2004). Our results tend to confirm these findings,
providing further insight because such skewness seems to be
related with the gradient of trophic positions and more
pronounced at the top of the trophic hierarchy.

These results have implications for omnivory. Much of
the interest about it concerned its degree of occurrence in
ecosystem food webs (Yodzis 1984, Williams and Martinez
2004) and the difficulty to accommodate it within the
framework of local stability analysis (Pimm and Lawton
1978, Pimm et al. 1991, Fagan 1997). Nonetheless, some
studies claimed that omnivory would be more common
among taxa at either higher or lower trophic positions. This
topic is still controversial. Studies on the Ythan Estuary
(Hall and Raffaelli 1991, Raffaelli and Hall 1996) showed
that omnivory should be less common for species feeding at
lower trophic levels: organisms feeding higher, in fact,
having several trophic levels at disposal to feed on, likely
would exhibit omnivorous strategies. On the other hand,
Yodzis (1984), by studying the 40 Briand’s food webs
(Briand 1983), argued that the number of loop-forming
omnivore links (both observed and expected) decreased as
the trophic position of the predators increased. More
recently, other studies confirmed that omnivory would
predominate above the herbivore trophic level (Thompson
et al. 2007). All these works analyzed, however, purely
binary food webs. By incorporating interaction strengths in
the computation of link density through AMI, we described
omnivory as more pronounced toward the bottom of the

trophic hierarchy, a result that would have remained hidden
if the analysis were carried out using binary food webs.

Simulated models yielded similar results than un-
weighted binary real webs. When only trophic links are
considered (Fig. 3a: C) the correlation between the two
indices becomes slightly negative. That is, in binary food
webs with randomly distributed links, but maintaining
same connectance as the original webs, AMI decreases with
trophic position and the number of connections increases
for top species. This is what would be predicted by null
models. The cascade model (Cohen et al. 1990) predicts
food webs characterized by nodes with an increasing
number of connections as the trophic position increases
(i.e. top predators are more likely to be generalist than
lower-ranked species). Also, assemblages of species simu-
lated by the niche model and its variants (Allesina et al.
2008) exhibit more generalist diets as trophic position
increases. A possible explanation for our result stands in the
inclusion of link magnitude in the analysis. While cascade
and niche models are useful to describe topological
structure of real ecosystems, the effective specialist activity
of species at higher trophic positions, which strongly
depends on the uneven distribution of link intensities,
might remain hidden due to the use of binary data.

The absence of relation between the Spearman’s rho
values and the size of the food webs in the six scenarios built
up on weighted data suggests for scale independence
(correlation between link density and trophic position is
not affected by size). Correlations obtained from unweighted
trophic networks are also scale-independent, except for the
‘living’ scenario in which AMI on inflows and TP are based
upon trophic links only (R2�0.665, pBB0.001). This latter
result suggests that when using weighted data the effect of
food web size vanishes, whereas it affects the correlation
between AMI and TP in unweighted webs; this is an
important conclusion because it highlights a further diffi-
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Figure 3. Box plots of Spearman’s rho estimating correlations between TP and AMI on inflows (C�canonical trophic aggregation TP vs
‘AMI-living’; H�original matrix-based TP vs ‘AMI-whole’; W�path-based TP vs ‘AMI-whole’) in simulated networks: (a) binary food
webs with same connectance as real ecosystems, randomly distributed links (C�mean��0.211, SD�0.237; H�mean��0.098,
SD�0.203; W�mean��0.112, SD�0.201), (b) weighted networks preserving link position as of real webs but randomly assigned
intensities (C � mean�0.410, SD�0.195; H�mean�0.263, SD�0.195; W�mean�0.281, SD�0.198), (c) weighted food webs
maintaining same connectance as original ecosystems with link positions and their intensities randomly assigned (C�mean��0.018,
SD�0.229; H�mean�0.185, SD�0.201; W�mean�0.191, SD�0.198).
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culty when food web analysis is carried out on binary data
under the living scenario.

In conclusion, to answer our initial questions, the results
showed that link density is related to species trophic position
and that it decreases from basal species to top consumers;
this pattern holds across the ecosystems we studied.
Although the concept of trophic level may not be sufficient
to explain ecosystem organization, and food web complexity
spreads the effects of productivity and consumption
throughout the web (Polis and Strong 1996), our results
suggest that such activities would be constrained by the
trophic hierarchy, which thus becomes a key lecture for
energy delivery in food webs. Extending the analysis to the
binary counterparts of real food webs and to simulated food
webs revealed that the pattern we observed in weighted webs
is opposite to that expected from null models. We show here
how including interaction strength may change substantially
the outcomes of food web analysis and this provides further
evidence for a shift in focus from an unweighted to a
weighted approach in food web studies (Dunne et al. 2002a,
2002b, Berlow et al. 2004, Tylianakis et al. 2007).
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Appendix 1.

Trophic position (TP) and average mutual 
information (AMI)

Trophic position
Trophic position is determined by the type and magnitude of ex-
change flows. These flows are given in the matrix form that is 
presented in Fig. S1.

This matrix can be easily partitioned in sub-matrices with flows 
involving only living components (species or groups of species) 
and non-living components (receiving non-trophic flows). To ap-
ply the canonical trophic aggregation (C) one extracts the sub-ma-
trix of inter-compartmental exchanges between living nodes (Fig. 
S1), assigning non-living matter and detritus to the first trophic 
level (Ulanowicz 1995, Scotti et al. 2006). For the original matrix-
based network unfolding method (Higashi et al. 1989) and the 
path-based network unfolding analysis (Whipple 1998) the whole 
set of flows in the matrix is considered (decyclization algorithms 
are not required) and this prevent detritus from being assigned an 
arbitrary trophic level (Fig. S1).

In C, TP calculation is performed as in Eq. S1. In case of a 
binary food web the trophic activity would be evenly distributed 
between the prey (Eq. S2). 
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S is the total number of nodes, TPi and TPj are, respectively, the 
trophic positions of nodes i and j, while the ratio between tij and T·j is 
the fraction by which species i (tij) enters the diet of species j (T·j). 

The calculation for binary data makes use of n·j, the total 
number of links entering the species j, and lij that is 1 if species j 
consumes species i and 0 if not. The diet composition of each spe-
cies can be inferred by evenly assigning the whole intake among its 
prey, in case of unweighted food webs, or proportionally distribut-
ing the total input according to the strength of trophic links. So, if 
a species is partially primary carnivore for half of its energy intake, 
and herbivore for the remaining half, calculation yields a TP of 2.5 
= 0.5 × 2 + 0.5 × 3.

Average mutual information (AMI)
The question whether complexity affects ecosystem stability has 
long been central in ecology. MacArthur (1955) applied Shan-
non’s information index to the flows in ecosystem networks as
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where H and S are the diversity of flows and the number of species 
in the network, respectively; k is a scalar constant, and tij is the flow 
from node i to node j, with T·· that indicates the total amount of 
energy throughout the network (total system throughput, TST)
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The increasing consensus around this index stimulated its applica-
tion to the more accessible stocks of biomass, shifting the discus-
sion from flow diversity to biomass diversity and its effects on 
stability. Unfortunately, May (1972) demonstrated that a higher 
biodiversity in linear dynamical systems was more likely to result 
in instability and ecologists quickly abandoned applications of in-
formation theory to food webs, maintaining the same prejudice 
also when Rutledge et al. (1976) applied a Bayesian emendation 
of Shannon’s measure to MacArthur’s index of flow diversity. 
These authors used the notion of conditional probability and split 
MacArthur’s index in two complementary terms. The joint prob-
ability that an arbitrary elementary unit of currency both leaves i 
and enters j can be estimated by the quotient (tij/T··), whereas the 
conditional probability that the unit goes to compartment j, given 
it already left i (Ti·), or that exhibited by a flow exiting the node 
i in respect to the total input to compartment j (T·j) are defined, 
respectively, as
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As a consequence, the measure of total flow diversity is amended 
as follows

 H = AMI + H
c
 (S7)

where the average mutual information (AMI) quantifies the 
amount of diversity that is encumbered by structural constraints
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and Hc represents the amount of ‘choice’ (residual diversity/free-
dom) pertaining to both the inputs and outputs of an average 
node in the network.
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Therefore, the overall complexity of the flow structure, as measured 
by the MacArthur’s index, can be divided in two parts: a) AMI that 
estimates how orderly and coherently flows are connected; b) Hc 
that gauges the disorder and freedom that is preserved. Rutledge 
et al. (1976) proposed Hc as an appropriate measure of ecosystem 
maturity (Odum 1969), but further studies (Atlan 1974, Ulano-
wicz 1980) suggested AMI as more reliable index to describe the 
developmental status of an ecological network. However, Ulano-
wicz and Wolff (1991) adopted Hc as a tool to estimate effective 
connectance per node in ecosystems. In particular, dividing Hc in 
two terms reveals more about its meaning:

 

H
c
= −

t
ij

T
⋅ ⋅

log
2

t
ij

T
i ⋅

⎛

⎝⎜
⎞

⎠⎟
−

t
ij

T
⋅ ⋅

log
2

t
ij

T
⋅ j

⎛

⎝⎜
⎞

⎠⎟j = 1

S

∑
i = 1

S

∑ =
j = 1

S

∑
i = 1

S

∑

 

=
T

i ⋅

T
⋅ ⋅i = 1

S

∑ −
t

ij

T
i ⋅

log
2

t
ij

T
i ⋅

⎛

⎝⎜
⎞

⎠⎟j = 1

S

∑
⎡

⎣
⎢

⎤

⎦
⎥ +

T
⋅ j

T
⋅ ⋅

−
t

ij

T
⋅ j

log
2

t
ij

T
⋅ j

⎛

⎝⎜
⎞

⎠⎟i = 1

S

∑
⎡

⎣
⎢

⎤

⎦
⎥ =

j = 1

S

∑

 
=

T
i ⋅

T
⋅ ⋅

H
i ⋅
+

T
⋅ j

T
⋅ ⋅

H
⋅ j

j = 1

S

∑
i = 1

S

∑  (S10)

with output diversity at node i (Hi·) and input diversity at node j 
(H·j) calculated as
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Average diversity of the biomass going to consumers, weighted by 
total outputs (Ti·), and average diversity of inflows, weighted by 
total inputs (T·j), constitute Eq. S10, with the average diversity 
over both input and output that can be written as Hc/2. Because 
the diversity of pathways through a decision tree is an exponential 
function of the number of branch points that generate the tree, 
the mean number of flows from a typical node in the network 
should be

 m = 2
H c /2

 (S13)

Similarly to what proposed by Ulanowicz and Wolff (1991), Ber-
sier et al. (2002) applied the diversity of input and output biomass 
flows to compute a sort of effective connectance index called link 
density (LD). First, they introduced the equivalent numbers of 
consumers for taxon i (ni·) and prey for taxon j (n·j), computed as 
the reciprocals of Hi· and H·j
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Equivalent numbers of consumers and prey represent the number 
of events that, occurring in equal proportion, would produce the 
same values of outflow and inflow diversity measured in a given ec-
osystem. The link density is then computed averaging equivalent 
numbers of consumers and prey over all the species and weighting 
their values by relative outflows and inflows
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Then, the difference between the effective connectance (m) pro-
posed by Ulanowicz and Wolff (1991) and the link density (LD) 
formulated by Bersier et al. (2002) resides solely in the weighting 
which applies, in the first case, to outflow and inflow diversities, 
and to taxa’s equivalent numbers of consumers and prey in the lat-
ter. In particular, the effect of weighting is larger when m is com-
puted, being applied to diversities as exponents in the geometric 
mean of input and output effective connectance.

Both the applications developed by Ulanowicz and Wolff 
(1991) and Bersier et al. (2002) are obtained from output (Eq. 
S11) and input (Eq. S12) diversities, aiming to identify average 
connectance per node. In particular, they refer to the Eq. S9, mak-
ing use of information on residual diversity (Hc) for total equiva-
lent links (both entering and exiting each node).

In the present manuscript we discuss an alternative approach, 
focusing on average mutual information (Eq. S8) which accounts 
for constraints in the flow structure. We split the whole index 
into relative contribution of flows entering or exiting each node, 
weighting their effect with the corresponding throughput (T·j or 
Ti·)
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The information is correlated both to the level of input flow ar-
ticulation, for each node j, and to outflow diversity of i prey when 
the AMI on incoming links is estimated (Eq. S17), while adopting 
its counterpart on outgoing links, evenness of flows exiting each 
node i and entering its predators j is measured (Eq. S18).

A generalist trophic behavior, meaning more indeterminacy of 
flow structure, is described by a lower AMI on inflows (AMI·j) 
than in case of specialized diets, while the tendency to avoid shar-
ing natural enemies (apparent competition) with similar species, 
represented by peculiar pathways linking a prey to its predators, is 
associated to higher AMI on outflows (AMIi·).

Since the catalyst for the formulation of AMI on inflows and 
outflows is the Shannon measure of entropy (Shannon 1948), 
these indices reach their minimum when all the input flows to 
node j, or output links from compartment i, occur in equal inten-
sity, while the maximum is a function of the energy/matter distri-
bution in each event. Moreover, their contribution to the whole 
AMI depends on the fraction of throughput processed by each 
node j (T·j), or i (Ti·), as regards to TST (T··)
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4

Figure S1. A squared (S+3) × (S+3) matrix is another form to represent ecological flow networks. It is comprised of exchange flows 
between system compartments (l living and nl non-living) and the outside environment. Flows from and to the outside environment 
are called imports, exports and respirations (non-usable energy). Food webs, in this work, originated from ecological flow networks and 
link intensities were determined by flow values of the corresponding network matrices. 
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Figure S2. Plots of Spearman’s rho values against food web size in presence of weighted data. Plots (a), (b) and (c) refer to the Input 
scenario (AMI computed on incoming links). Plots (d), (e) and (f ) refer to the Output scenario (AMI on outflows). In plots (a) and (d) 
correlation coefficients are based on AMI vs C; correlation coefficients that make plots (b) and (e) are based on AMI vs H; finally, Spear-
man’s rho values in plots (c) and (f ) were computed as AMI vs W. Linear regression lines are shown (S = number of compartments)
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Figure S3. Effect of network size (S = number of compartments) on the correlations between AMI and TP in the 26 binary food webs. 
The keys for plots are the same as in Fig. S2. All the correlations are scale-independent but the first case, when strictly living exchanges are 
considered in the comparison between AMI on incoming links and TP (R2 = 0.665, p << 0.001). Linear regression lines are depicted.
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Table S1. List of the ecological networks considered in the analysis. Total number of nodes (S) and number of non-living compartments 
(nl) are given. Flow intensities are measured as energy (i.e, kcal m−2 year−1 or cal cm−2 year−1), carbon (i.e. g C m−2 year−1 or mg C m−2 
summer−1) and ash free dry weight (g AFDW m−2 year−1). The last column summarizes the references to networks analyzed.

Ecosystems S nl Flow units References

NETWRK
Aggregated Baltic Sea 15 3 mg C m–2 day–1 Wulff and Ulanowicz 1989
Cedar Bog Lake 9 1 cal cm–2 year–1 Lindeman 1942
Charca de Maspalomas 21 3 mg C m–2 day–1 Almunia et al. 1999
Chesapeake Mesohaline Ecosystem 15 3 mg C m–2 day–1 Wulff and Ulanowicz 1989
Chesapeake Mesohaline Network 36 3 mg C m–2 summer–1 Baird and Ulanowicz 1989
Crystal River Creek (control) 21 1 mg C m–2 day–1 M. Homer W. M. and Kemp unpubl., Ulanowicz 1986
Crystal River Creek (delta temp.) 21 1 mg C m–2 day–1 M. Homer W. M. and Kemp unpubl., Ulanowicz 1986
Lower Chesapeake Bay in Summer 34 3 mg C m–2 summer–1 Hagy 2002
St. Marks River (Florida) Flow Network 51 3 mg C m–2 day–1 Baird et al. 1998
Lake Michigan Control Network 36 1 g C m–2 year–1 A. E. Krause and D. M. Mason unpubl.
Middle Chesapeake Bay in Summer 34 3 mg C m–2 summer–1 Hagy 2002
Mondego Estuary 43 1 g AFDW m–2 year–1 Patrício et al. 2004
Final Narraganasett Bay Model 32 1 mg C m–2 year–1 Monaco and Ulanowicz 1997
North Sea 10 0 kcal m–2 year–1 Steele 1974
Somme Estuary 9 1 g C m–2 year–1 H. Rybarczyk unpubl.
Upper Chesapeake Bay in Summer 34 3 mg C m–2 summer–1 Hagy 2002
Upper Chesapeake Bay 12 2 g C m–2 year–1 A. Osgood unpubl.
Ythan Estuary 13 3 g C m–2 year–1 Baird and Milne 1981

ATLSS
Cypress Wetlands (dry season) 68 3 g C m–2 year–1 Ulanowicz et al. 1997
Cypress Wetlands (wet season) 68 3 g C m–2 year–1 Ulanowicz et al. 1997
Marshes and Sloughs (dry season) 66 3 g C m–2 year–1 Ulanowicz et al. 2000
Marshes and Sloughs (wet season) 66 3 g C m–2 year–1 Ulanowicz et al. 2000
Florida Bay (dry season) 125 3 g C m–2 year–1 Ulanowicz et al. 1998
Florida Bay (wet season) 125 3 g C m–2 year–1 Ulanowicz et al. 1998
Mangroves (dry season) 94 3 g C m–2 year–1 Ulanowicz et al. 1999
Mangroves (wet season) 94 3 g C m–2 year–1 Ulanowicz et al. 1999

 


